
Memory and Pattern Recognition
in the Abstract Neuron

Analysis of the Simple Hebbian, Oja, and BCM Models in a

biological and computational context

Hugh Easton

Middlebury College
Spring 2023

i

Memory and Pattern Recognition in the Abstract Neuron

Analysis of the Simple Hebbian, Oja, and BCM Models in a biological and
computational context

Hugh Easton

Abstract

Memory recollection and the ability to reconstruct signals from partial input is one of the
most important capabilities and deepest mysteries of the biological neuron. A suite of
models have been designed to understand and imitate this power of the brain, based on
the hypothesis that learning occurs through the changing of synaptic connections in the
neuron. Here, we pursue the analysis of Hebbian-based models (the Simple Hebbian Model,
Oja’s Rule, and the BCM Model), all based on the notion that if a neuron persistently
takes part in the firing of another neuron, their connection will become stronger. We
analyze the utility of each of these rules in both a biological and computational context.
Through stability analysis and simulation, we show the instability and shortcomings of
the Hebbian Rule, the stability and ability to recognize patterns of Oja’s Rule, and the
BCM Model’s unique ability to both reconstruct and recollect patterns.

ii

Contents

1 Introduction 1

2 Simple Hebbian Learning 6
2.1 Instability of Simple Hebbian Learning . 7
2.2 Simple Hebbian Learning in a Simulated Environment 9

3 Oja’s Rule 13
3.1 Oja’s Rule with Penalization and in Continuous Space 14
3.2 Stability of Oja’s Rule . 18
3.3 An Oja-Trained Neuron in a Simulated Environment 20

4 The Bienenstock-Cooper-Munro (BCM) Model 28
4.1 Stability of the BCM Model . 32
4.2 Simulating BCM Learning . 37

5 Conclusion 44

A Appendix 47
A.1 Taking learning rules from discrete to continuous time 47
A.2 Code . 48
A.3 Interactive Visualization . 48

iii

List of Figures

1.1 A sketch of a simplified post-synaptic neuron. The neuron both receives
and outputs a message through specialized connections called synapses. . . 2

1.2 A visual representation of a very simple abstract neuron of the kind rep-
resented in Equation (1.1). The diagram is colored with the same scheme
as the biological neuron in Figure 1.1 according to the functionality of each
piece. 4

2.1 The outputs of the Simple Hebbian Model in simulation. The weights of
the neuron were trained using the rule in Equation (2.1), with a learning
rate of η = 10−3 for 10,000 iterations. In Plot a), the rule was trained on
only one specific pattern of input, then in b) on uniform random input,
and in Plot c), lastly with a probability of 95% random input and 5%
occurring intermittently mixed. In all cases, the Simple Hebbian-trained
weights exhibit instability. 10

3.1 Oja’s rule is simulated only receiving one specific pattern, Equation (3.10),
as input. The simulation was run for 104 iterations and a learning rate of
η = 10−4, the synaptic weights converge to the dominant eigenvector of the
correlation matrix. 23

3.2 Oja’s rule is simulated using input randomly chosen from a uniform distribu-
tion, for 105 iterations. Parameters are otherwise identical to the simulation
shown in Figure 3.1. 24

3.3 The Oja-Trained Neuron’s weights and output on a well-mixed input of 95%
noise and 5% pattern with a magnitude higher than the noise.The learning
rate is η = 10−3. We can tell the neuron is learning this pattern because
the weights begin to favor the synapse that receives the largest input in the
pattern, x1. 25

3.4 The neuron is trained on 1,000 iterations of patterned input after which it is
exposed to only noise. After 7,500 more iterations, the neuron is given the
pattern four more times to test its memory. The learning rate is η = 10−3.
We see the Oja-Trained Neuron forgets this pattern after enough time. . . . 26

iv

4.1 The abstract neuron’s output over 40,000 iterations when trained on the
BCM rule for two alternating inputs, x1 = (cos(0.4), sin(0.4)) and x2 =
(sin(0.4), cos(0.4)). The BCM rule is run with η = ηw

ηθ
= 0.001 and ηθ =

0.425. The neuron takes around 20,000 iterations to reach stable weights
at which point it has reached a large selectivity between the outputs, and
remains there for the duration of its stimulation. 39

4.2 The BCM Neuron is trained on both patterned and random input for
10,000 iterations and a learning rate of η = 10−3. The simulations demon-
strate that not only will output on the patterned input remain stable, but,
provided the output on the initial pattern is higher than the output on
the noise, the neuron will consistently favor the patterned input with one
synapse favored over random noise. 41

4.3 The BCM-Trained Neuron is simulated for 20,000 iterations on solely the
patterned input from Equation (4.25). After selecting this pattern, the
neuron is fed normalized random noise for the rest of the simulation. The
neuron is trained with ηw = 0.01 and ηθ = 0.017. Shown are the neuron’s
outputs for the pattern and for random noise over time. Note that the
outputs are shown for both types of inputs for the entire duration of the
simulation, even if our neuron is not updating its weights according to that
input. Even when not receiving the patterned input, the neuron will still
prefer that pattern over random noise for an indefinite period of time. . . . 42

1

Chapter 1

Introduction

During a famous passage of the novel Rememberance of Lost Time by Marcel Proust, the

narrator tastes a Madeleine Cake dipped in tea and suddenly vividly recalls his childhood

home. This theme comes up several more times throughout the semi-autobiographical

work’s 4,215 pages. At one point, the sensory feeling of walking on the uneven cobblestones

of a street floods the protagonist, Marcel, with memories of his past. You might be

familiar with this kind of “involuntary memory” (a term coined by Proust) [3]. Anything

from the smell of an old school to the cracks in a familiar city sidewalk can send our

mind racing through memories we did not even realize we had access to. It is a concept

that has fascinated everyone from philosophers to neuroscientists since ancient times.

Freud thought these memories were the gateway to repressed feelings about ourselves, and

today, AI researchers attempt to replicate associative memory’s power in capturing the

meaning of words and images [1] [18]. The desire to understand and recreate this effect

has gradually morphed into a theory of the power of the brain: associative memory, and

its main ingredient, synaptic plasticity [15].

Before diving into the connection between Proust’s “involuntary memory” and synaptic

plasticity, it is necessary to understand, at a basic level, how the brain works. Our brains

are formed by networks of interconnected biological cells called neurons. Figure 1.1

illustrates this biological informational unit. At a simple level, one neuron takes inputs

2

EEE
É IE

THE POST-SYNAPTIC NEURON
Input Synapses

Output Synapses

Direction of signal

Figure 1.1: A sketch of a simplified post-synaptic neuron. The neuron both receives and
outputs a message through specialized connections called synapses.

from other neurons, and based on those inputs, it fires into the next neurons it is connected

to. These signals travel between neurons at specialized sites known as synapses. The

neuron firing into another is called a pre-synaptic neuron, and the neuron receiving that

input is the post-synaptic neuron. A basic way of looking at informational processing on

this small scale, is the idea that the neuron weights all these inputs or synapses differently,

and the output of the neuron is the sum of all of those weights multiplied by their respective

synaptic inputs. Learning occurs in the brain via change in the weights of the inputs from

different synapses, i.e. different pre-synaptic neurons. These changing weights are called

synaptic weights, or synaptic strengths, and the process of their change is known as

synaptic plasticity [15].

In 1949, Psychologist Donald O. Hebb proposed a law explaining how synaptic plastic-

ity worked towards the associative memory that interests Proust, Freud and AI researchers.

He suggested that if one neuron “persistently takes part” in the firing of another, the

synaptic weight between the two becomes stronger. This rule is otherwise referred to as

the Hebbian Rule or informally, “what fires together wires together” [15]. Let us look at

Hebb’s Law in the framework of Marcel’s Madeleine Cake. In Marcel’s childhood he tastes

3

the cake every Sunday morning. Every Sunday morning, an input pattern representing

this taste persistently causes activity in a section of Marcel’s brain. At the same time, his

neurons are sending messages to register his childhood kitchen, who he is with and even

his plans for the day. This happens every Sunday, and each time the neuronal networks

holding the information of his surroundings and the sensory input of the cake both fire.

According to Hebb’s Law, as these seemingly separate networks continue to fire in sync,

they become more and more connected. When Marcel tastes the cake twenty years later,

this sensory input is received once again. In turn, because this signal is strongly connected

to all of these other neurons representing so much of his childhood, they begin firing again,

and Marcel starts remembering. The ability to recreate entire sections of memory from

one input pattern is fascinating, and not only understanding the process, but being able

to recreate it helps to detail the nature of human memory, and the ability to imitate how

we learn.

A simple way to understand and mimic the function of a neuron is used in Artificial

Neural Networks (ANNs). The fundamental unit of an ANN is an abstract neuron.

While the neurons used in ANNs are a bit more complex, for our purposes the abstract

neuron takes in a vector of n inputs at time t, x(t) ∈ Rn, and generates a scalar output,

y(t), as the weighted sum,

y(t) = x(t) ·w(t) = x⊤(t)w(t) = w⊤(t)x(t) =
n∑

i=1

wi(t)xi(t), (1.1)

where w(t) ∈ Rn are our synaptic weights from earlier [9]. The neuron in Equation

(1.1) is represented visually in Figure 1.2. While this version of a neuron is not a perfect

representation of how neurons in our brain actually learn and fire, it is a useful abstraction.

We seek to show how the abstraction can exhibit similar learning and memory behavior

to a biological neuron, as well as the desired behavior of a simple unsupervised learner

(a learner who does not need labels to learn patterns).

Our goal is to demonstrate the utility of the abstract neuron (presented in Equation

(1.1) and Figure 1.1) in both the biological and computational context of unsupervised

4

X

W
X z

Wz

3
V3 y

Wr

in

Figure 1.2: A visual representation of a very simple abstract neuron of the kind represented
in Equation (1.1). The diagram is colored with the same scheme as the biological neuron
in Figure 1.1 according to the functionality of each piece.

learning. In particular, to find the simplest mathematical rule for synaptic learning that

provides pattern recognition and recollection for the abstract neuron.

Since Hebb’s claim in 1949, many models have tried to emulate the ability of synaptic

plasticity to demonstrate learning. Here we analyze three: The Simple Hebbian Model,

Oja’s Rule, and the BCM Rule, to show the learning capability of the Abstract Neuron.

First in Section 2, we will introduce the concept of Simple Hebbian Learning, which will

be the motivation for the remainder of our models. We then show the Simple Hebbian

Rule is unstable and therefore unsuitable for our purposes. The instability of the rule is

the motivation for our next rule in Section 3: Oja’s Rule, which fixes the Simple Hebbian

instability by normalizing the update synaptic weights. Oja’s Rule shows our desired

stability as well as the ability to recognize patterns. We demonstrate these features through

more stability analysis and simulation. In Section 4, we discuss the BCM rule of learning,

which incorporates more biological realism into the learning rule, and has the added ability

to recall patterns. Through simulations of the BCM rule, we compare it to Oja’s Rule,

especially in its ability to remember. Through these steps, we demonstrate that simple

math models of plasticity for the basic abstract neuron can learn and recall patterned

5

input demonstrating the key features of associative memory.

6

Chapter 2

Simple Hebbian Learning

In his book The Organization of Behaviour, Donald O. Hebb characterized learning as

follows,

“When an axon of a cell A is near enough to excite cell B or repeatedly or

persistently takes part in firing it, some growth or metabolic change takes place

in both cells such that A’s efficiency, as one of the cells firing B, is increased.”

[8]

In the most simple terms, this Hebbian Rule is represented over discrete time as

w(t+ 1) = w(t) + ηy(t)x(t), (2.1)

with synaptic weights, w, output y and input x as functions of time. The essence of the

Hebbian Rule is captured in Equation (2.1) because if there is a high output from our

post-synaptic neuron, y(t), at some input with a strong signal from synapse i, at the next

time step the corresponding synaptic weight, wi will be much larger. Hence, a neuron’s

connections to pre-synaptic neurons correlated with high output become stronger. The

learning rate is 0 < η ≪ 1, which is chosen to be small in accordance with how weight

changes in our brains actually occur. The actual synaptic strengthening that occurs each

time a neuron fires is a small fraction of the changes that happen in our brain. This

7

makes sense, since neurons can fire up to 16 times per second, and drastically changing

connections in our brain would present a problem for our daily function [15]. We can also

adjust our learning rate to hold this same rule true over continuous time as

dw

dt
= yx, (2.2)

to the same effect. The process of moving from discrete to continuous time is shown in

Appendix A.1.

2.1 Instability of Simple Hebbian Learning

To investigate the appropriateness of the Hebbian Rule in a biological and computational

context, we analyze its stability. As we discuss later, stability in weights is vital for an

Abstract Neuron to be neurologically accurate and mathematically useful.

First, we suppose that there is a stable fixed point in the space of the synaptic weights;

call it w∗. Due to the stochastic nature of the input vector x at that stable fixed point,

we would expect the weights to fluctuate around w∗ over time, but stay relatively close

by. In other words, on average over time, the weights would be equal to w∗. We denote

taking an average over time of a vector x, as ⟨x⟩, so it should be true that,

〈
dw

dt

∣∣∣∣
w∗

〉
= 0.

Therefore, to begin our stability analysis, we take the average over time of the learning

rule in Equation (2.2). In order to justify looking at change in weights as an average over

time, we assume that the change in synaptic weights happens slower than the changes in

input. Recall that according to the abstract neuron in Equation (1.1) and Figure 1.2, the

output is represented as a weighted sum of the input, y = w⊤x. Therefore we can write

the time-averaged continuous Hebbian Model as

〈
dw

dt

〉
= ⟨(w⊤x)x⟩. (2.3)

8

Now, before we take that time average, we will simplify our notation further. To do this,

first imagine how this learning update in Equation (2.3) applies to an individual weight,

wi:

〈
dwi

dt

〉
=

〈∑
j

wjxj

xi

〉

=

〈∑
j

wjxjxi

〉
.

We define the correlation matrix, C = ⟨xx⊤⟩, as symmetric with an entry Cij = ⟨xixj⟩

as the product of the time-averaged inputs of synapses i and j. Therefore, the time-

averaged change in all weights can be represented

〈
dw

dt

〉
= Cw.

Returning to our fixed point, w∗, its average change in time must be 0 in order to be a

fixed point, and therefore,

0 = Cw∗. (2.4)

Now, in order to be a fixed point, w∗ acts as an eigenvector of C with corresponding

eigenvalue zero; this will be important for our stability analysis to come.

To continue, let’s observe some things about the correlation matrix C. C is positive

semi-definite. By definition, a matrix is positive semi-definite if and only if for any non-zero

vector a, a⊤Ca ≥ 0. This is shown for C by the following,

a⊤Ca = a⊤⟨x⊤x⟩a

= ⟨a⊤x⊤xa⟩

= ⟨(xa)⊤(xa)⟩

= ⟨(xa)2⟩ ≥ 0.

Most importantly, being positive semi-definite means that C solely has non-negative eigen-

9

values. Returning to Equation (2.4), imagine we are at the fixed point w∗ which is an

eigenvector with eigenvalue zero. Because we are dealing with stochastic input, andCmust

have some positive eigenvalues, if there is any fluctuation in the input with a component

along a different eigenvector than w∗, then the behavior of w will grow exponentially along

that more dominant eigenvector, since C must have some positive eigenvalues. Eventually

the weights would move in the direction of the eigenvector with the largest eigenvalue, but

they will still increase in size unboundedly. Therefore there are only unstable fixed points

for the Hebbian Learning Rule [9].

2.2 Simple Hebbian Learning in a Simulated Environment

Unbounded growth for synaptic weights makes little sense in the context of the human

brain. The instability of the Hebbian Rule means that unless somehow the synaptic weights

are initialized at zero and refuse inputs from pre-synaptic neurons, they will increase

towards infinity. Since an actual brain has finite resources, it cannot afford to increase the

strengths of these connections to such an extreme.

We simulate the Simple Hebbian Model on three kinds of input to test whether it

describes adequate behavior of the abstract neuron. In Figure 2.1b) the neuron is trained

on fully random input, x ∈ R4, ∀xi ∼ uniform(0, 1). This represents a similar input to

what an optical sensory neuron would receive with eyes closed. An ideal neuron on this

input would not react or increase its output, since it should not recognize a pattern, as

experimental evidence shows [6]. When the neuron receives a pattern repeatedly at each

time step, for example when our eyes remain looking at the same scene for a period of

time, the neuron should increment the highest weights of that input and therefore settle to

10

a) b)

c)

0 2000 4000 6000 8000 10000
Iterations

0

5

10

15

O
ut

pu
t,

 y

1067
Output of Simple Hebbian-Trained Neuron

on partially patterned input
Output on patterned input
Output on random input

Figure 2.1: The outputs of the Simple Hebbian Model in simulation. The weights of the
neuron were trained using the rule in Equation (2.1), with a learning rate of η = 10−3 for
10,000 iterations. In Plot a), the rule was trained on only one specific pattern of input,
then in b) on uniform random input, and in Plot c), lastly with a probability of 95%
random input and 5% occurring intermittently mixed. In all cases, the Simple Hebbian-
trained weights exhibit instability.

11

a higher output than it provides on random input. However, as when x is fully patterned,

x =



5

0.1

0.1

0.1


, (2.5)

the simulated neuron acts the same and in Figure 2.1a), y,w → ∞. The neuron does

show promise, however, in that it does not grow as fast during fully random input as it

does when receiving the same pattern over and over.

To test the Simple Hebbian Rule’s ability to decipher between these two inputs (pat-

terned and random), The Hebbian-Trained neuron is simulated around 95% of the time

receiving random inputs, and 5% of the time receiving the pattern in Equation (2.5). This

is akin to the sensory neurons that fire with the input of a particular scent; our noses do not

receive particles encoding that scent 100% of the time. This well-mixed pattern scenario is

more accurate to how actual patterned signals appear on a single-neuron scale [17]. High-

response to this type of mixed-in pattern would also be beneficial from an unsupervised

learning point of view. Distinguishing pattern from noise is important in a wide array

of machine learning methods, including Generative Adversarial Networks (GANs) which

train by distinguishing real images from noise [5]. As evident in Figure 2.1, the Simple

Hebbian neuron’s output for both the patterned and random inputs grows unboundedly.

While visually, we can decipher between the outputs when the neuron receives the pattern

and the noise, to be of any use computationally, this would require some sort of moving

window to determine when the threshold output for a pattern had been met. As time

goes on through more iterations, we can imagine that the difference between successive

patterned input spikes will be orders of magnitude from each other, thereby rendering the

training rule difficult to use in a computational setting. From a biological perspective,

the output of the neuron on partially patterned input does not make sense. For example,

when we smell a cake baking in the oven, it does not generate magnitudes more of recog-

12

nition in our minds as it did the last time we smelled a baking cake. Therefore, a Simple

Hebbian-trained neuron has no usable memory or pattern reconstruction in a biological or

computational context. In order to justify the validity of the abstract neuron in Equation

(1.1), a stable learning rule for neurons still must be found to exhibit pattern recognition

and recollection.

13

Chapter 3

Oja’s Rule

The problem with the Hebbian Rule in Equations (2.1) and (2.2) is that it provides us

with no stable fixed weights. The result is an unbounded strengthening of all synapses,

inconsistent with the finite resources of biology. There must exist a way to keep the

synaptic weights constrained in order to find a model accurate to the way neurons actually

train. Here we introduce Oja’s Rule which uses normalization to stabilize the weights, and

show that this modification gives the Oja-trained neuron the ability to recognize patterns.

We seek to keep the synaptic weights stable in an intuitive way by normalizing the Heb-

bian Rule. We start with the discretized version of the learning update in Equation (2.1).

Following Oja et al. [13], we then divide each updated weight vector by the Euclidean

Norm of itself (its elements squared, summed and their total square-rooted),

w(t+ 1) =
w(t) + ηy(t)x(t)

∥w(t) + ηy(t)x(t)∥
. (3.1)

Component-wise, this equation can be written,

wi(t+ 1) =
wi(t) + ηy(t)xi(t)√∑
j [(wj(t) + ηy(t)xj(t))2]

, (3.2)

which we can imagine as an update applying to each ith synapse. To show boundedness

of each weight call ŵi(t) = wi(t) + ηy(t)xi(t). Since all weights are positive, it must be

14

true that

ŵi(t+ 1)2 ≤
∑
j

(ŵj(t+ 1))2

ŵi(t+ 1) ≤
√∑

j

(ŵj(t+ 1))2

wi(t+ 1) =
ŵi(t+ 1)√∑
j(ŵj(t+ 1))2

≤ 1.

Therefore, the weights in this rule are bounded by 1. Because of its boundedness, we

expect Oja’s Rule to converge to a particular set of weights given any particular input

scheme over time [13].

3.1 Oja’s Rule with Penalization and in Continuous Space

Assuming synaptic modification is slow compared to the statistical variations in the input

over time, we can find a continuous version of Oja’s Rule whose asymptotic paths are the

same as the rule in Equation (3.2).

Taking the normalized version of Oja’s Rule into continuous time proves difficult; plus,

normalization is also inconsistent with biological processes. For example, in the biological

neuron of Figure 1.1, input signals are sent into the neuron at different stages along the

neuron. The neuron therefore never has the ability to weight a particular input according

to the sum of all inputs. Therefore, an equivalent form not involving normalization should

be found. To find a more realistic version of Oja’s Rule, we expand it as a power series

and translate it to a continuous time framework.

Note that in Equation (3.2), during the update, we essentially have two separate values

for a weight at the next time step, wi(t+1). We have the Simple Hebbian weight ŵi(t+1),

call it,

ŵi(t+ 1) = wi(t) + ηy(t)xi(t),

15

and the Oja Rule version of that weight,

wi(t+ 1) =
ŵi(t+ 1)√∑n
j=1(ŵj(t+ 1))2

, (3.3)

as defined in Equation (3.2). Then we’ll perform a small notation change. We define the

Euclidean Norm function as

N(ŵ1(t+ 1), ..., ŵn(t+ 1)) =

√√√√ n∑
j=1

(ŵj(t+ 1))2

=

√√√√ n∑
j=1

(wj(t) + ηy(t)xj(t))2.

Also note that for our normalization, it’s true that for any constant a, aN(wi) = N(awi).

At any time, t, if we apply the normalization function to each Oja-defined weight, wi(t),

N(w1(t), w2(t), ..., wn(t)) = N

(
ŵ1(t)

N(ŵ1(t), ...ŵn(t))
, ...,

ŵn(t)

N(ŵ1(t), ...ŵn(t))

)
=

1

N(ŵ1(t), ...ŵn(t))
N(ŵ1(t), ...ŵn(t))

= 1.

We will use this property of the Oja-defined weights later on. Now, we apply the normal-

ization to the denominator of the discrete Oja Rule as defined in Equation (3.3),

N(ŵ1(t+ 1), ...ŵn(t+ 1)) = N (w1(t) + ηy(t)x1(t), ..., wn(t) + ηy(t)xn(t)) (3.4)

The normalization function still makes for some sloppy analysis, to get rid of the N , we

expand the expression on the right side of Equation (3.4) as a Taylor Series with respect

to the learning rate η about the point η = 0, so that it becomes

N(ŵ1(t+ 1), ...ŵn(t+ 1)) = N(w1(t), ..., wn(t)) + η
∂N

∂η

∣∣∣∣
η=0

+O(η2). (3.5)

16

We know from above that N(w1(t), ..., wn(t)) = 1, and since the learning rate η is very

small we can neglect the terms of higher order in η. Then the expression in (3.5) becomes,

N(ŵ1(t+ 1), ...ŵn(t+ 1)) = 1 +
∂

∂η

√√√√ n∑
i=1

(wi(t)2 + 2ηwi(t)xi(t)y(t) + η2xi(t)2y(t)2


η=0

= 1 +

[
1

2

(
n∑

i=1

(wi(t))
2 + 2ηwi(t)xi(t)y(t) + η2(xi(t))

2(y(t))2

)− 1
2

·

(
n∑

i=1

2wi(t)xi(t)y(t) + 2η(xi(t))
2(y(t))2

)]
η=0

= 1 +
1

2

(
n∑

i=1

(wi(t))
2

)− 1
2
(

n∑
i=1

2wi(t)xi(t)y(t)

)

= 1 +N(w1(t), ..., wn(t)) ·
1

2
·

(
n∑

i=1

2wi(t)xi(t)y(t)

)

= 1 + 1 ·

(
n∑

i=1

wi(t)xi(t)y(t)

)

= 1 +

(
n∑

i=1

wi(t)xi(t)

)
y(t)

N(ŵ1(t+ 1), ...ŵn(t+ 1)) = 1 + (y(t))2,

since according to the abstract neuron in Equation (1.1), our output y(t) =
∑n

i=1wi(t)xi(t).

Now, recall our definition of the next weight in time, wi(t+ 1),

wi(t+ 1) =
ŵi(t+ 1)

N(ŵ1(t+ 1), ...ŵn(t+ 1))

=
wi(t) + ηxi(t)y(t)

1 + (y(t))2
.

Again, we can express this component-wise form of the learning rule as a Taylor Series

Expansion about η = 0. We calculate the partial of wi(t+ 1) with respect to η, at η = 0

17

as,

∂wi(t+ 1))

∂η
=

∂

∂η

[
wi(t) + ηxi(t)y(t)

1 + (y(t))2

]
η=0

=

[
−(wi(t) + ηxi(t)y(t))(1 + η(y(t))2)(y(t))2 +

xiy(t)

1 + η(y(t))2

]
η=0

= −wi(t)(y(t))
2 + xiy(t).

Substitute this into the Taylor Series, and the result is,

wi(t+ 1) = wi(t) + ηy(t)xi(t)− ηy(t)2wi(t), (3.6)

which is our discrete, component-wise form of Oja’s Rule. We can neglect the terms of

second order or higher since our learning rate η, is chosen to be very small [13].

For ease of analysis, we take the continuous version of Oja’s Rule which asymptotically

approaches the behavior of the discrete version [13]. We perform the steps outlined in

Appendix A.1, similarly to the Hebbian Rule to get the continuous version of Oja’s Rule,

dw

dt
= yx︸︷︷︸

Hebbian Term

−

Penalization Term︷︸︸︷
y2w. (3.7)

Each of the terms present in Equation (3.7) tell us something about how our math-

ematical neuron is designed for memory. First, there is the basic term from Hebb’s rule

that “what fires together, wires together,” xy. This term ensures the associative learning

of our rule, if a synapse has a strong input when the neuron has a high output, the corre-

sponding synaptic connection will be rewarded. The other key aspect, the “penalization

term,” awards higher weights less on high outputs. This term should keep the stability of

our synaptic connections, so the weights cannot get stronger unboundedly. The task left

is to prove that this penalization works to keep Oja-trained weights stable.

18

3.2 Stability of Oja’s Rule

To determine the stability of the fixed points of Oja’s Rule, we follow similar steps to our

stability analysis of Simple Hebbian Learning. First, assuming that the change in inputs

happens at a slower rate than the change in synaptic weights, we average the update rule

time such that Equation (3.7) becomes,

〈
dw

dt

〉
= ⟨xy − y2w⟩,

which component-wise is,

〈
dwi

dt

〉
=

〈∑
j

wjxjxi −

∑
j,k

wjxjwkxk

wi

〉
.

Now, remember we defined the correlation matrix, C, such that an entry Cij was equal to

the time-averaged product of the inputs xi and xj . Therefore, provided the weights w(t)

and the inputs x(t) are statistically independent, we can take an average over time, and

the expression becomes, 〈
dw

dt

〉
= Cw−

[
w⊤Cw

]
w. (3.8)

To find equilibrium points for the weight vector, we set the update rule equal to zero, and

rearrange:

Cw =
[
w⊤Cw

]
w. (3.9)

Therefore, a set of weights at equilibrium must be some eigenvector of C, with eigenvalue

λ = w⊤Cw. This claim is verified below. We now must show that the eigenvector

corresponding to the maximum eigenvalue is the only stable fixed point.

First, consider the normalized eigenvector (and fixed point in weights) v1 of C, with

eigenvalue λ1, such that Cv1 = λ1v1. We choose a set of weights, w, close to this

19

eigenvector,

w = v1 + ϵ.

The change in this arbitrarily close weight over time can be represented by

dw

dt
=

dv1

dt
+

dϵ

dt
,

dw

dt
=

dϵ

dt
,

since dv1
dt = 0. According to our averaged learning rule in Equation (3.8),

〈
dw

dt

〉
=

〈
dϵ

dt

〉
= C(v1 + ϵ)−

[
(v1 + ϵ)⊤C(v1 + ϵ)

]
(v1 + ϵ),

= Cv1 +Cϵ− (v⊤
1 Cv1 + ϵ⊤Cv1 + v⊤

1 Cϵ+ ϵ⊤Cϵ)(v1 + ϵ),

= λ1v1 +Cϵ− (v⊤
1 Cv1)v1 − (ϵ⊤Cv1)v1 − (v⊤

1 Cϵ)v1

− (v⊤
1 Cv1)ϵ+O(ϵ2),

= λ1v1 +Cϵ− λ1(v
⊤
1 v1)v1 − λ1(ϵ

⊤v1)v1 − (v⊤
1 Cϵ)v1

− λ1(v
⊤
1 v1)ϵ+O(ϵ2).

Since v1 is normal (|v1| = v⊤
1 v1 = 1) and because C is symmetric, we can write this as

〈
dϵ

dt

〉
= λ1v1 +Cϵ− λ1v1 − λ1(ϵ

⊤v1)v1 − (ϵ⊤Cv1)v1

− λ1ϵ+O(ϵ2),

= Cϵ− 2λ1(ϵ
⊤v1)v1 − λ1ϵ+O(ϵ2).

〈
dϵ
dt

〉
is a vector of the averaged rate of change in each of the components of the perturbed

weights. We can safely ignore terms of higher order of ϵ, since it is chosen such that each

component is small. Now, we take the vector projection of
〈
dϵ
dt

〉
onto another normalized

eigenvector, v2, to find the component of the average change of the perturbation over time

20

in the direction of another fixed point. This projection is,

v⊤
2

〈
dϵ

dt

〉
= v⊤

2 Cϵ− 2λ1(ϵ
⊤v1)v

⊤
2 v1 − λ1ϵv

⊤
2

= λ2v
⊤
2 ϵ− 2λ1(ϵ

⊤v1)v
⊤
2 v1 − λ12λ1(ϵ

⊤v1)− λ1v
⊤
2 ϵ

= (λ2 − λ1)v
⊤
2 ,

keeping in mind at the last step that the distinct eigenvectors are orthogonal since C is

symmetric. The expression v⊤
2

〈
dϵ
dt

〉
= (λ2 − λ1)v

⊤
2 , is only negative if λ1 is a larger eigen-

value than any other λ2. Therefore, since we showed our only fixed points are eigenvectors

of C, the distance between the current weight value and a fixed point will shrink only if

the fixed point is the maximal eigenvector. The only stable fixed point of Oja’s rule is at

the dominant eigenvector. In the long-term, under training in Oja’s Rule, we expect the

weights, w, to head towards the dominant eigenvector of C [9].

Now, a stable fixed point in the weights of Oja’s rule does not necessarily prove their

convergence to the dominant eigenvector. However, we have also shown the boundedness

of the discrete version of this rule in our earlier introduction. Therefore, it is reasonable

to assume that the system of weights is not unstable, and engages in some kind of long-

term behavior towards the fixed point. A fuller proof of convergence of the stochastic

differential equation has been made by Oja et al. [14]. Through simulation we show that

even when the necessary assumptions are not met, the weights will still converge towards

the dominant eigenvector.

3.3 An Oja-Trained Neuron in a Simulated Environment

When we simulate the synaptic growth of the Oja-Trained Neuron, we are interested

in a few aspects of the neuron as both a biological representation and a computational

tool. As described before, a good learning tool should demonstrate stability, an ability to

distinguish patterns, and to recall those patterns. We simulate the neuron in random and

patterned environments to see that it demonstrates these desired aspects.

21

We use simulations to test for the stability of Oja’s Rule, first by running a simulation

feeding the neuron only identical input. In the Simple Hebbian simulation, this provoked

the neuron into higher output quicker than other forms of input, so if anything should

show instability in Oja’s rule, this should be it. While the results of this simulation hold

true for any positive-valued patterned input, the input we choose to feed to our neuron

takes the same form,

x =



5

0.1

0.1

0.1


(3.10)

A correlation matrix of only this input would therefore look like,

C = xx⊤ =



25 0.5 0.5 0.5

0.5 0.01 0.01 0.01

0.5 0.01 0.01 0.01

0.5 0.01 0.01 0.01


,

with a dominant eigenvalue of λ1 = 25.03 and a corresponding eigenvector of

v1 =



0.994

0.02

0.02

0.02


.

Using the correlation matrix for this patterned input and setting the synaptic weights

22

equal to this eigenvector verifies the claim in Equation (4.14) that the eigenvalue

λ = w⊤Cw = v⊤
1 Cv1,

25.03 =

[
0.994 0.02 0.02 0.02

]


25 0.5 0.5 0.5

0.5 0.01 0.01 0.01

0.5 0.01 0.01 0.01

0.5 0.01 0.01 0.01





0.994

0.02

0.02

0.02


,

25.03 =

[
24.88 0.4976 0.4976 0.4976

]


0.994

0.02

0.02

0.02


≈ 25.03.

The results of simulating learning on the pattern in Equation (3.10) can be seen in Figure

3.1. The weights converge to the dominant eigenvector of the correlation matrix therefore

demonstrating the desired stability of this learning rule even with fully correlated inputs.

A similar stability is found on uniformly random inputs, as shown in Figure 3.2. For

uniformly random inputs, the expected value, E [unif(0, 1)] = 0.5, meaning,

⟨x⟩ =



0.5

0.5

0.5

0.5


,

and the corresponding correlation matrix C is

C =



0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25


.

23

Figure 3.1: Oja’s rule is simulated only receiving one specific pattern, Equation (3.10),
as input. The simulation was run for 104 iterations and a learning rate of η = 10−4, the
synaptic weights converge to the dominant eigenvector of the correlation matrix.

The dominant eigenvector, corresponding to an eigenvalue of λ = 1, is

v =



0.5

0.5

0.5

0.5


.

In Figure 3.2, it is shown that the synaptic weights simulated under random input do in

fact converge to this fixed point. So, the Oja-trained neurons demonstrate stability on

both random and patterned inputs, but it remains to be shown if they can differentiate

between the two.

To test if utilizing Oja’s rule on real, randomly-generated inputs will give it the abil-

ity to learn the difference between patterned and noisy inputs, we perform an identical

simulation to the Simple Hebbian Model, mixing 5% patterned with 95% random inputs.

Since the patterned input in Equation (3.10) has a larger magnitude than is possible for

24

Figure 3.2: Oja’s rule is simulated using input randomly chosen from a uniform distri-
bution, for 105 iterations. Parameters are otherwise identical to the simulation shown in
Figure 3.1.

the random input, Oja’s rule should learn to maximize output on this pattern. The results

can be seen in Figure 3.3. The neuron is still able to find the most important (largest

magnitude) synaptic input x1 in this pattern and weigh it the heaviest. Any partial input

that is strong in the input x1, will trigger a strong response from this neuron. This is the

input reconstruction we see in the ability to visualize a hamburger upon just smelling it,

or how Marcel can recall his childhood from the taste of a cake. It remains to be shown,

however, that the Oja-Trained Neuron can retain this connection for enough time.

To test whether the Oja Neuron can retain the connections it has made to receive

patterns for a long enough time, as real associative memory does in humans, we train the

neuron solely on patterned input, then a period of noise for an interval, before giving the

neuron that same pattern again. We use the input pattern in Equation (3.10) for our

simulation once more. The simulation is run for 10,000 iterations, with a learning rate

of η = 10−3. For the first 1,000 iterations, the neuron is exposed to only the patterned

input such that the weights stabilize at the dominant eigenvector. Then, for the next

25

Figure 3.3: The Oja-Trained Neuron’s weights and output on a well-mixed input of 95%
noise and 5% pattern with a magnitude higher than the noise.The learning rate is η = 10−3.
We can tell the neuron is learning this pattern because the weights begin to favor the
synapse that receives the largest input in the pattern, x1.

26

Figure 3.4: The neuron is trained on 1,000 iterations of patterned input after which it is
exposed to only noise. After 7,500 more iterations, the neuron is given the pattern four
more times to test its memory. The learning rate is η = 10−3. We see the Oja-Trained
Neuron forgets this pattern after enough time.

27

7,500 iterations, the neuron is exposed to only noise, after which the pattern is shown to

it 4 separate instances. The results are presented in Figure 3.4. Over enough time, we

can see this Oja model forget the large weight that corresponds to the largest synaptic

input. Therefore, provided a large enough learning rate or a large enough time-scale with

no patterned input, the Oja-trained weights would almost surely forget the input. Recall

that in Proust’s story involving associative memory, the Madeleine Cake’s sensory pattern

triggered memories many years earlier from the protagonist’s childhood. The Oja Rule

provides no such ability in the synaptic plasticity it creates. To mimic the effect of human

recollection, a more robust model is needed, this is pursued in the following section.

28

Chapter 4

The Bienenstock-Cooper-Munro

(BCM) Model

The BCM Model was created in 1982 as an expansion of Hebb’s Law designed to explain

the selectivity of neurons in sensory areas of the brain. These are areas that deal

with patterned inputs in taste, smell or feel, like the memories from Proust’s novel [1].

Selectivity is a measurement of the difference between a neuron’s maximum and mean

outputs, defined as

Selx(w) = 1−
E
[
x⊤w

]
sup(x⊤w)

. (4.1)

In Equation (4.1), E
[
x⊤w

]
is the expected value of the output of the neuron, and

sup(x⊤w) is the essential supremum of the output of the neuron which we can think

of as the maximum output of the neuron. A neuron that has a similar mean output and

maximum output makes it difficult to differentiate between normal noise in output, and

a strong output; according to Equation (4.1), the result would also be a low selectivity.

If maximum output is much greater than expected output, the fraction
E[x⊤w]
sup(x⊤w)

would

end up small, and therefore selectivity would be large. BCM sought to maximize the

selectivity of the abstract neuron from Equation (1.1) [4].

The BCM model chooses to address the problem of instability in the Simple Hebbian

Model differently than the preceding models. While Oja’s Rule uses normalization and a

29

“forgetting” term to penalize high weights, it also results in an inability to differentiate

between two inputs similar in magnitude. Note that in all the above simulations, the effect

of differentiating noise from patterns is accomplished by ensuring patterned input has a

larger magnitude than noise. Bienenstock, Cooper and Munro chose a more biologically-

motivated approach. The BCM Model uses temporal competition between input patterns

to determine if weights are increased or decreased. The general idea behind this is to

introduce some threshold, θ, such that when the output, y(t), goes below that threshold,

the corresponding synaptic weights are penalized. If the output is above that threshold,

the weights are increased. The BCM rule proposed by Bienenstock et al. in 1982 takes

the general form

dw

dt
= ϕ(y(t), θ)x(t)− ϵw(t) (4.2)

ϕ(y(t), θ) =


−ηw, if y(t) < θ,

ηw, if y(t) > θ,

0, if y(t) = θ,

(4.3)

where 0 < ηw ≪ 1, is the learning rate for the synaptic weights [4]. In Equations (4.2)

and (4.3), the direction of the weights’ change is based on whether the output is above

or below some modification threshold, θ. The term −ϵw(t) implies uniform decay,

although that term is not weighted as highly as in Oja’s rule and is multiplied by a small

constant, 0 < ϵ ≪ 1. Later formulations of the rule (including the version used here) drop

the uniform decay term altogether [6] [10] [7] [11]. Now, ϕ, and θ must be found to ensure

biological realism and utility in computation, and to keep the BCM rule stable.

An early choice of the threshold function was to set it as a constant value, but this

resulted in unstable weights, just as in the Simple Hebbian Model. To show this, imagine

we choose some fixed threshold, θfixed, and any fixed point in weights w∗. We should see

30

that over time, the average change in weight, along this point,
〈
dw
dt

〉
= 0. Therefore,

0 =

〈
dw

dt

∣∣∣∣
w∗

〉
= ⟨ϕ(y(t), θfixed)x(t)⟩.,

= ϕ(ȳ, θfixed)x̄,

where ȳ, x̄ denotes an overall average over time. Again, we assume the synaptic weights

change on a much slower time scale than the input signals, and that the inputs are un-

correlated. In order for w∗ to be a fixed point, the input to the neuron must always be

x = 0 (which would make no sense for a functional neuron), or

ȳ = w∗x̄⊤ = θfixed.

Imagine we perturb some small distance from the fixed point w = w∗ + δ, then

ȳ = (w∗ + δ)x̄⊤ ̸= θfixed.

If the perturbation δ > 0, then ϕ > 0, and the weights are driven down further. If

δ < 0, then ϕ < 0, and the weights are incremented. In both cases, since the input is

positive, this perturbation changes
〈
dw
dt

〉
such that the weights are driven further away

from w∗. Therefore a fixed threshold results in unstable fixed points. A moving threshold

is proposed to help fix this instability problem.

The original BCM Model proposed a choice of ϕ using the time-averaged output of the

neuron, ȳ,

ϕ(y(t), θ) = y(y − θ), (4.4)

θ = (ȳ)p, (4.5)

which provides stability for choice of p > 1 [4]. The choice of the threshold as a moving-

time average also results in weights of low-selectivity being unstable. To show this, imagine

31

a set of weights with zero selectivity where the average output equals the maximum output.

Because the threshold for weight change is the average output, on a higher-than-average

output, the weights are incremented, causing more higher than average outputs and more

synaptic strengthening. On a lower-than-average output, the synaptic weights fall and the

outputs begin to to be lower than average (causing more weight weakening). Logically,

this should also result in stable fixed points being of high selectivity [4]. A moving-time

average threshold is also consistent with monocular eye-deprivation experimental results;

for example, when researchers deprived a mouse of sight in one eye, the neurons receiving

sensory information from the non-covered eye doubled in firing rate [6].

Since the original paper, other learning rules and choices of θ-modification schemes

and ϕ(y(t), θ) have been devised for specific applications such as one for receptive fields

in visual environments [11], or using a spatial average instead of a time average [10]. We

instead take the commonly-used approach of replacing the temporal average with a first-

order low-pass filter [7] [16] [17]. This changes the rule stated in Equations (4.2) and (4.3)

to

dw

dt
= ηwyx(y − θ), (4.6)

dθ

dt
= ηθ(y

2 − θ), (4.7)

with rates of change for the weights and threshold, 0 < ηw < ηθ, since θ should change

at a rate faster than the output. Equation (4.3) works as simply a moving approximation

of the squared average output, ȳ2. At each increment of time, the update moves the

threshold ηθ of the way along the direction from θ to ȳ2, thus this rule works as a kind

of a approximate moving average to the original threshold proposed by Bienenstock et al.

[4].

32

4.1 Stability of the BCM Model

As established in previous chapters, for biological and computational competence, the

BCM Model must exhibit stability. For this stability analysis, we pursue a different

technique than for the earlier models. Instead of focusing on the change in weight of our

neuron over time, we choose to follow the change in output of the abstract neuron over

time, as done by Udeigwe et al. [17]. We choose to analyze the output because, provided

the input remains relatively stable over time, if the output y = w · x remains stable, so

must the weights.

We start by assuming a fixed set of only two possible normalized, noncollinear inputs

that this neuron receives, X = {x1 = (x11, x12), x2 = (x21, x12)}, and their corresponding

outputs, y1 = w⊤x1, y2 = w⊤x2. The neuron receives the input x1 with probability ρ,

and x2 with probability 1 − ρ. The rate of change of the synaptic weights can therefore

be written as

dw

dt
= ρx1iy1(y1 − θ) + (1− ρ)x2iy2(y2 − θ), i ∈ {1, 2},

from Equations (4.6) and (4.7). Recalling that y = w⊤x, changes in output are written,

dy1
dt

= x11
dw1

dt
+ x12

dw2

dt
,

dy2
dt

= x21
dw1

dt
+ x22

dw2

dt
.

We are interested in the changes in the outputs themselves, which using the above equa-

tions, we can express as,

dy1
dt

= ηw

[
ρx1x

⊤
1 y1(y1 − θ) + (1− ρ)x1x

⊤
2 y2(y2 − θ)

]
, (4.8)

dy2
dt

= ηw

[
ρx1x

⊤
2 y1(y1 − θ) + (1− ρ)x2x

⊤
2 y2(y2 − θ)

]
, (4.9)

dθ

dt
= ηθ

[
ρy21 + (1− ρ)y22 − θ

]
. (4.10)

33

First, we find the threshold parameter, θ, at equilibrium. From Equation (4.19), we can

say that at equilibrium

θ = ρy21 + (1− ρ)y22. (4.11)

Note, since the two inputs are not collinear and their probability ρ ∈ (0, 1), the Equations

(4.8) and (4.9) for dy1
dt , and dy2

dt are zero if and only if for one choice of j ∈ {1, 2}, yj(yj −

θ) = 0. Also assuming that the inputs x1,x2 ̸= 0 and ρ ̸= 1, we substitute the value for θ

in Equation (4.11) into the change in output from Equations (4.8) and (4.9), and we find,

0 = y1
(
y1 −

(
ρy1

2 + (1− ρ)y2
2
))
, (4.12)

0 = y2
(
y2 −

(
ρy1

2 + (1− ρ)y2
2
))
. (4.13)

This shows us the fixed points of the change in output are when

(y1, y2, θ) =

{
(0, 0, 0),

(
1

ρ
, 0,

1

ρ

)
,

(
0,

1

1− ρ
,

1

1− ρ

)
, (1, 1, 1)

}
. (4.14)

Before finding the stability of these fixed points, to make analysis a little easier for us, we

will rescale time in terms of one of the learning rates, ηw. We will define the rescaled time

dimension as,

t̂ =
t

ηw
, (4.15)

and therefore,

d

dt̂
=

1

ηw
· d

dt
. (4.16)

We will also scale the inputs such that x1x
⊤
1 = 1. Therefore the magnitude of the other

input x2 is simply scaled according to the magnitude of the first without loss of generality.

34

The rescaled time derivatives in Equations (4.8) through (4.19) are then,

dy1

dt̂
= ρy1(y1 − θ) + (1− ρ)x1x

⊤
2 y2(y2 − θ), (4.17)

dy2

dt̂
= ρx1x

⊤
2 y1(y1 − θ) + (1− ρ)x2x

⊤
2 y2(y2 − θ), (4.18)

dθ

dt̂
=

ηθ
ηw

[
ρy21 + (1− ρ)y22 − θ

]
. (4.19)

Using these differential equations rescaled with respect to time, we calculate the Jacobian

matrix (a linearization about the fixed points) by taking the derivatives with respect to

each independent variable (y1, y2, and θ) in Equations (4.17) through (4.19). To simplify

notation, from here on we call a = x2x
⊤
2 , b = x1x

⊤
2 , c =

ρ
1−ρ , η = ηw

ηθ
. The Jacobian of this

system of differential equations is expressed as,

J(y1, y2, θ) =


2ρy1 − ρθ 2(1− ρ)by2 − (1− ρ)bθ −ρy1 − (1− ρ)by2

2ρby1 − ρbθ 2(1− ρ)ay2 − (1− ρ)aθ −ρby1 − (1− ρ)ay2

2
ηρy1

2
η (1− ρ)y2 − 1

η

 . (4.20)

To find the stability of the fixed points, in particular to show that the points (1ρ , 0,
1
ρ) and

(0, 1
1−ρ ,

1
1−ρ) are stable, we find the eigenvalues of the Jacobian at these points.

First, we demonstrate the stability of the point (y1, y2, θ) = (1ρ , 0,
1
ρ), which means we

must find the eigenvalues of

J

(
1

ρ
, 0,

1

ρ

)
=


1 − b

c −1

b −a
c −b

2
η 0 − 1

η

 ,

35

which we can find by solving,

0 =

∣∣∣∣∣∣∣∣∣∣
1− λ − b

c −1

b −a
c − λ −b

2
η 0 − 1

η − λ

∣∣∣∣∣∣∣∣∣∣
= (1− λ)

(
a

cη
+

a

c
λ+

1

η
λ+ λ2

)
+

b

c

(
− b

η
− bλ 2b

η

)
− 2a

ηc
− 2

η
λ

=
a

cη
+

a

c
λ+

1

η
λ+ λ2 +

a

cη
λ− a

c
λ2 − 1

η
λ2 − λ3 − b2

cη
− b2

c
λ+

2b2

cη
− 2a

ηc
− 2

η
λ

0 = λ3 +

(
a

c
+

1

η
− 1

)
λ2 +

(
b2 − a

c
+

1

η
+

a

cη

)
λ+

a− b2

cη
.

We define coefficients A2 = a
c + 1

η − 1, A1 = b2−a
c + 1

η + a
cη , and A0 = a−b2

cη as the

coefficients of the eigenvalues λ of second and first degree and the constants. According

to the Routh-Hurwitz criterion, if all these coefficients are positive and if A1A2 −A0 > 0,

then the roots of this polynomial are negative [2]. Therefore, if these conditions is met,

all eigenvalues are negative and the fixed point is stable. We can already say that A2 > 0,

since a, c > 0 and η < 1. We may also say that A0 > 0 since via the Cauchy-Schwarz

inequality, x2x
⊤
2 > (x1x

⊤
2)

2, therefore a > b2. Lastly we can show A1 > 0 by using the

facts that c ∈ (0,∞) and η ≪ 1,

A1 =
b2 − a

c
+

1

η
+

a

cη

cA1 = b2 − a+
c+ a

η

cA1 =
ηb2 − ηa+ c+ a

η

cA1 =
ηb2 − (1− η)a+ c

η

0 <cA1

0 <A1.

36

So the only condition to meet for this fixed point to be stable is

0 <

(
b2 − a

c
+

1

η
+

a

cη

)(
a

c
+

1

η
− 1

)
− a− b2

cη

0 <
ab2 − a2

c
+

a

cη
+

a2

c2η
+

b2 − a2

cη
+

1

η2
+

a

cη2
+

a− b2

c
− 1

η
− a

cη
+

b2 − a

cη

0 <
ab2 − a2

c
η2 +

a

c
η +

a2

c2
η +

b2 − a2

c
η + 1 +

a

c
+

a− b2

c
η2 − η − a

c
η +

b2 − a

c
η

0 <

(
(a− b2)(1− a)

c

)
η2 +

(
a2

c2
+

b2 − a

c
− 1

)
η + 1 +

a

c
.

Therefore, there is a stable fixed point at (1ρ , 0,
1
ρ) if the learning rates, inputs and their

probabilities meet the conditions

0 <

(
(a− b2)(1− a)

c

)
η2 +

(
a2

c2
+

b2 − a

c
− 1

)
η + 1 +

a

c
, (4.21)

with a = x2x
⊤
2 , b = x1x

⊤
2 , c =

ρ
1−ρ . We can follow the same process for the fixed point at

(y1, y2, θ) = (0, 1
1−ρ ,

1
1−ρ). The Jacobian evaluated at that point is

J(0,
1

1− ρ
,

1

1− ρ
) =


−c b −b

−cb a −a

0 2
η − 1

η

 ,

which means to find the eigenvalues and therefore the stability, we must evaluate

0 =

∣∣∣∣∣∣∣∣∣∣
−c− λ b −b

−cb a− λ −a

0 2
η − 1

η − λ

∣∣∣∣∣∣∣∣∣∣
= (−c− λ)

(
−a

η
+

1

η
λ− aλ+ λ2 +

2a

η

)
− b

(
cb

η
+ cbλ

)
− b

(
−2cb

η

)
=

−ac

η
− c

η
λ+ acλ− cλ2 − a

η
λ− 1

η
λ2 + aλ2 − λ3 +

cb2

η
− cb2λ

0 = λ3 +

(
c+

1

η
− a

)
λ2 +

(
a+ c

η
− ac+ cb2

)
λ+

c(a− b2)

η
.

37

We will again use the Routh-Hurwitz criterion to find the constraints for stability. Again,

via the Cauchy-Shwartz Inequality it is true that A0 = c(a−b2)
η > 0, and if we set the

learning rate such that 1
η > a then,

A1 =
a+ c

η
− ac+ cb2

=
(1− ηa)c+ (1 + b2η)c

η
> 0,

and, A2 = c + 1
η − a > 0. Via the Routh-Hurwitz criterion, we can say the fixed point

(0, 1
1−ρ ,

1
1−ρ) is stable if:

0 >

(
c+

1

η
− a

)(
a+ c

η
− ac+ cb2

)
− c(a− b2)

η

0 >
ac+ c2

η
+

a+ c

η2
+

−a2 − ac

η
− ac2 +

−ac

η
+ a2c+ c2b2 +

cb2

η
− acb2 − ac− cb2

η

0 > acη + c2η + a+ c− a2η − acη − ac2η2 − acη + a2cη2 + c2b2η2 + ηcb2 − ab2cη2 − acη + cb2η

0 > c
(
a− b2

)
(a− c)η2 +

(
2c
(
b2 − a

)
+ c2 − a2

)
η + a+ c.

Thus the fixed point (0, 1
1−ρ ,

1
1−ρ) is stable if

c
(
a− b2

)
(a− c)η2 +

(
2c
(
b2 − a

)
+ c2 − a2

)
η + a+ c > 0, (4.22)

and the learning rate 1
η > a. Thus we prove the stability of the BCM Learning Rule

for some rigorous constraints on inputs. In the following section we demonstrate the

convergence to these fixed points under these strict conditions, and that the BCM Rule

demonstrates stability even if these constraints are not fully met.

4.2 Simulating BCM Learning

Due to its constraints for stability stated in Equations (4.21) and (4.22), to properly

demonstrate the convergence of the BCM rule, a different, carefully designed strategy is

performed than for Simple Hebbian and Oja Rules. Following this contrived strategy, the

38

BCM Rule will be more directly compared to the simulations conducted on the BCM and

Oja Rules.

We start by following Udeigwe et al. [17] and Albesa-González et al. [16] in demon-

strating the selectivity of the BCM rule. For the purpose of simulation, the BCM rule

is shown in discrete time. Following the time-difference definition of the rule cited by

Trappenberg [15], we take the derivatives in Equations (4.6) and (4.7) as discrete time

differences and use the update rules:

w(t+ 1) = w(t) + ηwy(t)x(t)(y(t)− θ(t)), (4.23)

θ(t+ 1) = ηθ(y(t)
2 − θ(t)). (4.24)

The BCM rule is unique because it gives the abstract neuron the ability to select

one input pattern over another despite no difference in magnitude between the two. To

illustrate this, we simulate the neuron by alternating inputs every other iteration between

x1 = (cos(ϕ), sin(ϕ)) and x2 = (sin(ϕ), cos(ϕ)). This simulation satisfies every assumption

made in our stability analysis in the previous section: we have two normalized input

patterns and select an input with probability ρ = 0.5, the two inputs themselves have no

correlation, by being opposite each other, and to satisfy the stability requirements from

our analysis, we choose the parameters ηw = 0.25, ηθ = 0.425, ϕ = 0.4. Initial choices

for the threshold and both weights are chosen randomly between 0 and 1. The resulting

simulation is in Figure 4.1. In this simulation, the neuron demonstrates the maximization

of selectivity in the BCM rule when the neuron’s outputs converge to the fixed points,

y1 = θ = 2, y2 = 0, showing the neuron’s selection of input x1. This selectivity is important

in how a neuron can be “assigned” or naturally become aligned to a particular input, for

example a neuron aligning to the signal from the taste of a Madeleine Cake.

After having demonstrated the desired convergence proved in our stability analysis,

we simulate the BCM rule on a similar input scheme to the Simple Hebbian and Oja Rule

for a more rigorous comparison between the models. In particular, we are interested if

the BCM weighting scheme can both select between two incoming patterned signals and

39

0 1 2 3 4
Iterations 104

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y

BCM Neuron Output on Alternating Patterns x
1
 and x

2

Output on x
1

Output on x
2

Threshold,
Fixed points in output and

Figure 4.1: The abstract neuron’s output over 40,000 iterations when trained on the BCM
rule for two alternating inputs, x1 = (cos(0.4), sin(0.4)) and x2 = (sin(0.4), cos(0.4)). The
BCM rule is run with η = ηw

ηθ
= 0.001 and ηθ = 0.425. The neuron takes around 20,000

iterations to reach stable weights at which point it has reached a large selectivity between
the outputs, and remains there for the duration of its stimulation.

differentiate between mixed patterns and noise. We alter the input from Figures 2.1 and

3.3 to accommodate our assumption of normalized inputs to the abstract neuron. We first

normalize the “patterned” input in Equations (2.5) and (3.10), as,

x =



0.943

0.019

0.019

0.019


, (4.25)

which holds the same proportion of input coming from each synapse as the patterns used

in simulating the Simple Hebbian and the Oja Neurons. The random input the neuron

receives is normalized in a similar way: each input is drawn from the uniform distribution

between 0 and 1, then each input is divided by the sum of all inputs before being fed

to the neuron. The simulations in Figure 4.2 show that the BCM neuron maintains the

ability to recognize a repeated signal from random noise under most circumstances. In

40

simulation 4.2a), the patterned input occurs 5% of the time, yet the neuron is still able

to differentiate between the pattern in Equation (4.25) and noise. The fixed point for the

patterned input of this rule should be ypattern = 20, but the output is never that large,

since weights are consistently being decremented in unpredictable ways due to the low-

magnitude random output. This simulation is the best visualisation of how the threshold

works in a neuron, learning to become the boundary between rewarded, patterned input

and noise. In simulations 4.2b) and 4.2c), a similar outcome for the outputs is seen for 50%

and 95% patterned input, and less unpredictable input brings the patterned input closer

to its fixed point. This result is consistent with the findings of our contrived alternating

input scenario from earlier.

All simulations in Figure 4.2 provide a fairly accurate picture of how biological neurons

learn to only respond to given patterns; however, it should be noted that this kind of

learning did not always occur in simulation. In order for the BCM neuron to prefer the

normalized pattern over the normalized random noise, the pattern needs to provoke higher

output than the noise at the start of the simulation. Therefore, the threshold starts below

the output for the pattern and above that for the noise. This occurs naturally most of the

time in all but the 5% patterned input simulation, and can be accomplished, by artificially

weighting w1 higher than the other weights (since it corresponds to the highest synaptic

input in the patterned case), or by ensuring the neuron receives mostly patterns at the

start of its learning. Either way, the neuron will always select either the pattern or the

noise as its preferred input. The necessity of the neuron to receive one input more often

at the beginning of its learning period, is reminiscent of how a new memory may form.

Constant exposure to one form of input is typically how we learn to make associations.

To test if the BCM Neuron is able to keep its learned associations and therefore perform

better than Oja’s Rule, we perform a test of its recall ability. We use a simulation similar

to the test of the Oja-trained neuron’s recollection. First, we expose the neuron to the

pattern from Equation (4.25) for a period of time long enough so that the output reaches its

fixed point. Since the neuron is constantly exposed to that one pattern we can say ρ = 1,

41

a)

0 2 4 6 8
Iterations 104

-2

0

2

4

6

8
O

ut
pu

t,
y

Output of the BCM-Trained Neuron
On partially (5%) patterned input

Output on noise
Output on pattern
Threshold,

b)

0 2 4 6 8
Iterations 104

-1

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y

Output of the BCM-Trained Neuron
On 50% patterned input

Output on noise
Output on pattern
Threshold,
Fixed Points in output and

c)

0 2 4 6 8
Iterations 104

0

0.2

0.4

0.6

0.8

1

1.2

O
ut

pu
t,

y

Output of the BCM-Trained Neuron
On 95% patterned input

Output on noise
Output on pattern
Threshold,
Fixed Points in output and

Figure 4.2: The BCM Neuron is trained on both patterned and random input for 10,000
iterations and a learning rate of η = 10−3. The simulations demonstrate that not only
will output on the patterned input remain stable, but, provided the output on the initial
pattern is higher than the output on the noise, the neuron will consistently favor the
patterned input with one synapse favored over random noise.

42

0 2 4 6 8 10
Iterations 104

-2

0

2

4

6

8

O
ut

pu
t,

y

BCM Neuron Recollection - Output

Output on random input
Output on patterned input
Threshold
Initial exposure to patterned input

Figure 4.3: The BCM-Trained Neuron is simulated for 20,000 iterations on solely the
patterned input from Equation (4.25). After selecting this pattern, the neuron is fed
normalized random noise for the rest of the simulation. The neuron is trained with ηw =
0.01 and ηθ = 0.017. Shown are the neuron’s outputs for the pattern and for random
noise over time. Note that the outputs are shown for both types of inputs for the entire
duration of the simulation, even if our neuron is not updating its weights according to
that input. Even when not receiving the patterned input, the neuron will still prefer that
pattern over random noise for an indefinite period of time.

43

and therefore the stable fixed point reached is y = 1, θ = 1. After the neuron has selected

this pattern and the threshold and output are equal to each other, the neuron is then solely

exposed to normalized random noise for the remainder of the simulation. Since the noise

is not similar to the neuron’s preferred pattern, the neuron’s output decreases. The initial

decrease in the neuron’s output means that the threshold (as a moving time-average) will

drop as well as the weights themselves. Now, the neuron only produces output higher than

the threshold when the random input happens to weight input x1 strongly (since this was

the input synapse it learned as the strongest indicator of our “pattern”). Therefore, that

synaptic weight (w1) will be rewarded the strongest, and correspondingly the neuron will

react highly to input resembling the initial pattern it learned. The simulation is shown

in Figure 4.3. We can also see how this would apply in the inverse to a different pattern

indicated by one particular input being small, or for particular inputs of a given ratio. For

example, random noise high in a dimension of the pattern with a weak input would still

be below the threshold and keep the corresponding synaptic weight low.

In Figure 4.3, we see that this neuron has the ability to remember. Unlike the Oja’s

Rule simulation (Figure 3.4), the weight of the first synapse is not steadily degraded over

time despite the neuron’s constant exposure to noise. We have also seen that the BCM

neuron exhibits stability and pattern recognition, forming all our desired qualities of both

a biological and computational neuron: the ability to select between patterns in a stable

fashion, and to remember which pattern it selected. This justifies the BCM Rule in both

representing how neurons learn, and using the incredible capability of a simple weighted

sum, the abstract neuron, for memory and pattern recognition.

44

Chapter 5

Conclusion

Fueled by a fascination with associative memory, this thesis explored the biological accu-

racy and computational utility of an abstract neuron in pattern recognition and memory

through stability analysis and simulation. We pursued three models of synaptic weight

plasticity, all derived from the Hebbian theory of unsupervised learning in neurons that

“what fires together, wires together”. We demonstrated that the simplest form of this

rule provides no computational use as it is unstable. Then we introduced normalization

to the Simple Hebbian Rule to find Oja’s Rule: a learning rule in which synaptic weights

converge to a stable point. Simulation showed that Oja’s Rule resulted in pattern recog-

nition, even when interspersed by random noise. The ability to differentiate noise from

patterns is an impressive ability for such a simple algorithm, and a powerful tool in many

machine learning applications. When exposed to only noise for an extended period of

time, however, the Oja-trained neuron lost its association with this pattern. For further

biological realism, we followed BCM’s theory to devise a model to maximize selectivity in

the neuron. When analyzed, the resulting model demonstrated stability of output on two

discrete inputs for some constraints. When simulated, the BCM model showed stability

and selectivity between patterns, even when inputs did not follow those requirements.

Most importantly, this rule demonstrated a better ability to recall than Oja’s Rule. In

total, these models demonstrated the utility of a computational neuron as a way of both

45

understanding and using the capabilities of the human brain.

Today, from a computational perspective, the gold standard in recreating our brains is

the modern Artificial Neural Network (ANN). The ANN is composed by abstract neurons

like those analyzed here, with the addition of a bias to the weighted sum (y = wx+b), and

an activation function in between layers of neurons (representing the choice to “fire” of a

real neuron). These networks have shown their ability to create images from text prompts,

and answer questions in a way that approaches the power of the human brain. But their

thirst for data and computation to learn is expensive, and in some cases very inefficient

[12]. We propose that turning back to their origins, and incorporating the biology reflected

in the Hebbian-inspired learning rules could help with both efficiency and accuracy in these

models.

As a whole, the Hebbian-based rules analyzed in this paper can remain stable in

weight while differentiating patterns from noise and use associative memory to recollect

those patterns. Modern Artificial Intelligence has tried to imitate both of these abilities in

complex Neural Networks tangentially-related to real biology. For example, highly complex

Diffusion Models are trained to differentiate added noise from realistic images in order to

generate those images from noise. This is a skill for which the BCM and Oja rules show

talent. Furthermore, the denoising capability of the BCM Rule has been shown in earlier

papers [11] [6]. The Diffusion Model as well as several Large Language Models also use

the notion of associativity to “encode” meanings of words and images into what they call

“latent space”. These models use a highly nonlinear and complicated function called Long

Short-Term Memory, which (put reductively) encode the meanings of words by counting

how often words appear together [18]. The Hebbian Inspired rules perform this task in

a more biologically-realistic way. Oja’s Rule demonstrates associativity, as shown above,

with stable weights corresponding to an input pattern, and the BCM Rule shows that it

can hold onto this associativity for a long time even when extensively exposed to non-

relevant input. Perhaps connected BCM-trained neurons each tailored to specific words

or phrases, could form a simpler Hebbian associativity like those that may actually be in

46

our brains. Instability is also a problem that modern Neural Networks suffer from, with

the common problem of some synaptic weights exploding or vanishing to zero. Hebbian-

inspired learning rules open the door to a wide array of applications in today’s Machine

Learning field. Most importantly, the usefulness of the models shown here tells us that

we can always benefit from connecting AI back to its human roots, and remembering our

greatest inspiration: ourselves.

47

Appendix A

Appendix

A.1 Taking learning rules from discrete to continuous time

Biologically, time is not as simple as presented in discrete versions of the learning rules

in Equations (2.1) or (3.6). Therefore to keep a connection between the learning of the

abstract neuron and the biological cell it is based on, a continuous form of the learning

rule should be found. We will first demonstrate this process for the Hebbian Rule.

First, we rearrange the discrete Hebbian Rule in Equation (2.1) as

w(t+ 1)−w(t) = ηy(t)x(t). (A.1)

Call the change in weights from one time step to the next, ∆w = w(t+ 1)−w(t). If we

take the limit as ∆t → 0 of ∆w
∆t , we will have an equation for the instantaneous change in

weights over time. Taking this limit, we get the expression

lim
∆t→0

∆w

∆t
= lim

∆t→0

ηyx

∆t
. (A.2)

Now, if we choose η such that it decays to 0 at the same rate as ∆t, we can say

dw

dt
= yx, (A.3)

48

which is the continuous version of The Simple Hebbian Rule. This is true if, for example,

we choose a decay rate for η proportional to 1
t , then

η
∆t = 1.

The same steps can be performed on the discrete version of Oja’s Rule in Equation

(3.6), except the limit taken in that case is:

lim
∆t→0

wi(t+ 1)− wi(t)

∆t
= lim

∆t→0

η(y(t)xi(t)− y(t)2wi(t))

∆t
, (A.4)

and if we assign η in that same way such that it decays at the rate of ∆t,

∂w

∂t
= yx− y2w. (A.5)

Equation (3.7) is the corresponding continuous form of that rule. Note, however, while a

decaying learning rate is commonly used in machine learning applications, it makes little

sense in a biological context, as humans learn over their entire lifetimes. However it can be

shown that even when η does not necessarily decay to 0, but remains small, the continuous

learning in (3.7) is a good approximation of the discrete learning in System (3.6) [13].

A.2 Code

Code for simulating all learning rules under different input schemes was written in MAT-

LAB. The corresponding live scripts are available in a public repository at:

https://github.com/heaston2000/AbstractNeuronMemory.

A.3 Interactive Visualization

You can experiment with the Oja and BCM Rules (including feeding them visual input)

in a visualization found at: https://heaston2000.github.io/abstractneuronviz.

https://github.com/heaston2000/AbstractNeuronMemory
https://heaston2000.github.io/abstractneuronviz

49

Bibliography

[1] Involuntary memory, March 2023. Page Version ID: 1147034031.

[2] Routh–Hurwitz stability criterion, April 2023. Page Version ID: 1147902477.

[3] In Search of Lost Time, April 2023. Page Version ID: 1148752309.

[4] E. L. Bienenstock, L. N. Cooper, and P. W. Munro. Theory for the development of
neuron selectivity: orientation specificity and binocular interaction in visual cortex.
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,
2:32–48, January 1982.

[5] Jason Brownlee. A Gentle Introduction to Generative Adversarial Networks (GANs)
- MachineLearningMastery.com, June 2019.

[6] Leon N Cooper and Mark F. Bear. The BCM theory of synapse modification at 30:
interaction of theory with experiment. Nature Reviews Neuroscience, 13(11):798–810,
November 2012.

[7] Peter Dayan and L.F. Abbott. Theoretical Neuroscience, Computational and Math-
ematical Modeling of Neural Systems. The MIT Press, Cambridge, Massachusetts,
2005.

[8] Donald Hebb. The Organization of Behaviour. John Wiley & SONS, Inc. , Chapman
& HALL, Limited, New York, NY; London, UK, 1st edition, 1949.

[9] John Hertz. Introduction to the Theory of Neural Computation. Addison-Wesley
Publishing Company, Redwood City, California, 1991.

[10] Nathan Intrator and Leon N. Cooper. Objective function formulation of the BCM
theory of visual cortical plasticity: Statistical connections, stability conditions. Neural
Networks, 5(1):3–17, 1992.

[11] C C Law and L N Cooper. Formation of receptive fields in realistic visual environments
according to the Bienenstock, Cooper, and Munro (BCM) theory. Proceedings of the
National Academy of Sciences of the United States of America, 91(16):7797–7801,
August 1994.

[12] Cade Metz. What’s the Future for A.I.? The New York Times, March 2023.

[13] E. Oja. A simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15(3):267–273, 1982.

50

[14] Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and
eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis
and Applications, 106(1):69–84, 1985.

[15] Trappenberg T. Fundamentals of Computational Neuroscience. OUP, 2002.

[16] Albesa-González et al. Weight dependence in bcm leads to adjustable synaptic com-
petition. Journal of Computational Neuroscience, 50:431–444, June 2022.

[17] Lawrence C. Udeigwe, Paul W. Munro, and G. Bard Ermentrout. Emergent Dynami-
cal Properties of the BCM Learning Rule. The Journal of Mathematical Neuroscience,
7(1):2, February 2017.

[18] Teal Wittier. Deep learning, January 2023.

	Introduction
	Simple Hebbian Learning
	Instability of Simple Hebbian Learning
	Simple Hebbian Learning in a Simulated Environment

	Oja's Rule
	Oja's Rule with Penalization and in Continuous Space
	Stability of Oja's Rule
	An Oja-Trained Neuron in a Simulated Environment

	The Bienenstock-Cooper-Munro (BCM) Model
	Stability of the BCM Model
	Simulating BCM Learning

	Conclusion
	Appendix
	Taking learning rules from discrete to continuous time
	Code
	Interactive Visualization

